Um hacker anônimo chamado Pliny the Prompter diz que normalmente leva cerca de 30 minutos para quebrar os modelos de inteligência artificial mais poderosos do mundo.
Ele diz que manipulou o Llama 3, da meta, para compartilhar instruções sobre como fazer napalm. Ele fez o Grok, de Elon Musk, elogiar Adolf Hitler. Sua própria versão hackeada do modelo GPT-4o, da OpenAIapelidado de “Godmode GPT”, foi banido pela startup depois de começar a aconselhar atividades ilegais.
Ele disse ao Financial Times que sua exploração de falhas não tem intenção maliciosa, mas faz parte de um esforço internacional para destacar as deficiências de grandes modelos de linguagem (LLMs, sigla em inglês) lançados ao público por empresas de tecnologia em busca de grandes lucros.
“Estou nessa cruzada de conscientizar sobre as verdadeiras capacidades desses modelos”, disse Plínio, um trader de criptomoedas e ações que compartilha suas conquistas no X.
“Muitos desses ataques são inovadores, que poderiam dar artigos de pesquisa por si só… no fim das contas, estou fazendo um trabalho para os donos dos modelos de graça.”
Ele é apenas um dos vários hackers, pesquisadores acadêmicos e especialistas em segurança cibernética que correm para encontrar vulnerabilidades em LLMs emergentes. Um dos métodos usados é enganar os chatbots com avisos para contornar os “guardrails”, dificuldades que as empresas de IA fizeram na tentativa de garantir que seus produtos fossem seguros.
Esses hackers éticos, conhecidos como “white hat”, frequentemente encontram maneiras de fazer com que os modelos de IA criam conteúdo perigoso, espalham desinformação, compartilham dados privados ou geram código malicioso.
Empresas como OpenAI, Meta e Google já usam “equipes vermelhas” de hackers para testar seus modelos antes de serem amplamente lançados. Mas as vulnerabilidades da tecnologia desenvolvida um mercado em expansão de startups de segurança dos LLM que constroem ferramentas para proteger empresas que planejam usar modelos de IA.
As startups de segurança de aprendizado de máquina arrecadaram US$ 213 milhões em 23 acordos em 2023, acima dos US$ 70 milhões do ano anterior, de acordo com o provedor de dados CB Insights.
“O cenário de jailbreaking [quebra de travas] começaram cerca de um ano atrás, e os ataques até agora evoluíram constantemente”, disse Eran Shimony, pesquisador de vulnerabilidades da CyberArk, um grupo de segurança cibernética que agora oferece segurança em LLM.
“É um jogo constante de gato e rato, de fornecedores melhorando a segurança de nossos LLMs, mas também de ataques tornando seus prompts mais sofisticados.”
Esses esforços estão ocorrendo na medida em que os reguladores globais buscam intervir para conter os perigos potenciais em torno dos modelos de IA. A UE aprovou a sua Lei de IA que cria novas responsabilidades para os donos dos modelos, enquanto o Reino Unido e Singapura estão entre os países que estudam novas leis para regular o setor.
A Califórnia votará em agosto um projeto de lei que exigiria que os grupos de IA do estado —que incluem Meta, Google e OpenAI— garantissem que não desenvolvessem modelos com “uma capacidade perigosa”.
“Todos [os modelos de IA] se encaixariam nessas seleções”, disse Plínio.
Enquanto isso, LLMs manipulados com nomes como WormGPT e FraudGPT foram criados por hackers maliciosos para serem vendidos na dark web por até US$ 90 (R$ 488) para ajudar em ataques cibernéticos, programando malwares ou ajudando golpistas a criar campanhas de phishing fraudulentos.
Outras variações surgiram, como EscapeGPT, BadGPT, DarkGPT e Black Hat GPT, de acordo com o grupo de segurança de IA SlashNext.
Alguns hackers utilizam modelos de código aberto “não censurados”. Para outros, os ataques de jailbreak representam uma nova arte, com os perpetradores frequentemente compartilhando dicas em comunidades em plataformas como Reddit ou Discord.
As abordagens variam. Há desde hackers indivíduos usando palavras aleatórias que foram bloqueadas para contornar os filtros até os ataques mais sofisticados, que usam IA para automatizar.
No ano passado, pesquisadores da Universidade Carnegie Mellon e do US Center for AI Safety disseram ter encontrado uma maneira de quebrar sistematicamente LLMs como o Bate-papoGPT da OpenAI, o Gemini do Google e uma versão mais antiga do Claude da Anthropic —modelos proprietários “fechados” que demonstraram eram menos vulneráveis a ataques.
Os pesquisadores acrescentaram que “não é claro se tal comportamento pode ser totalmente corrigido pelos donos de LLM”.
A Anthropic publicou uma pesquisa em abril sobre uma técnica chamada “many-shot jailbreaking”, em que hackers podem preparar um LLM mostrando a ele uma lista de perguntas e respostas, encorajando-o a responder a uma pergunta prejudicial modelando o mesmo estilo.
O ataque foi possível pelo fato de que modelos desenvolvidos pela Anthropic agora têm uma janela de contexto maior, ou espaço para adição de texto.
“Embora os LLMs de última geração sejam poderosos, não há risco de que ainda representem riscos verdadeiramente catastróficos. Modelos futuros podem chegar a esse ponto”, escreveu a Anthropic.
“Isso significa que agora é o momento de trabalhar para mitigar possíveis quebras de LLMs antes que possam ser usados em modelos que possam causar danos sérios.”
Alguns desenvolvedores de IA disseram que muitos ataques permaneceram relativamente benignos por enquanto.
Mas outros alertaram sobre certos tipos que poderiam começar a levar a vazamentos de dados, e agentes mal-intencionados poderiam encontrar maneiras de extrair informações sensíveis, como dados nos quais um modelo foi treinado.
O DeepKeep, um grupo de segurança de LLM israelense, encontrou maneiras de fazer o Llama 2, o modelo de IA anterior da Meta que é de código aberto, a vazar as informações identificáveis dos usuários. Rony Ohayon, CEO da DeepKeep, disse que sua empresa estava desenvolvendo ferramentas específicas de segurança de LLM, como firewalls, para proteger os usuários.
“Disponibilizar modelos open source distribui os benefícios da IA e permite que mais pesquisadores identifiquem e ajudem a corrigir vulnerabilidades, para que as empresas possam tornar os modelos mais seguros”, disse a Meta em um comunicado.
A empresa acrescentou que introduziu testes de segurança com especialistas internos e externos em seu último modelo Llama 3 e seu chatbot Meta AI.
OpenAI e Google disseram que estão continuamente treinando modelos para se defenderem melhor contra esses tipos de ataques. A Anthropic, que especialistas dizem ter feito os esforços mais avançados em segurança, disse que são permitidas mais pesquisas sobre esses tipos de ataques.
Apesar das garantias, os riscos só aumentarão à medida que os modelos se tornarem mais interligados com a tecnologia e dispositivos existentes, disseram os especialistas.
Neste mês, a Apple anunciou que se associou ao OpenAI para integrar o ChatGPT em seus dispositivos, como parte da Apple Intelligence.
“No geral, as empresas não estão qualificadas”, disse Ohayon.